Summary

18 May 2022 17:53

Principles	State	The state of a quantum system is described by a non-zero vector in a Hilbert space.
	Superposition	vectors describe the same states if they are equivalent in the projective Hilbert Space
	Observable	A measurable quantity is described by a Hermitian operator on the Hilbert space.
	Measurement	Eigenvalues of Hermitian operators are the measure outcomes.
	Evolution	$i\hbar \dot{\phi}\rangle = \hat{H} \phi\rangle$
	Collapse Postulate	After the measurement, the state will be projected on the eigenvectors.
Operators	Uncertainty Princip	le Minimal Uncertainty at gaussian package
		Uncertainty Principle is completely a consequence of statistic, as the trade-off between the spatial space and dual function space
	Commutator	Commute operators share same eigenvectors
		$\left[\hat{q},\hat{p} ight]=i\hbar\hat{l}$
		Complete set of Commuting Observables (C.S.C.O) means non-degenerated diagonalizable observables
	Hermitian	Eigenvalues are real
		Eigenvectors of a Hermitian operator belonging to different eigenvalues are orthogonal
		Expectation of Hermitian operators are Real
		All expectation of an operator are real -> operator is Hermitian
		The eigenvectors of a Hermitian operator form a complete orthogonal basis set for the Hilbert space the operator acts upon.
	Hadamard Lemma	$e^{sX}Ye^{-sY} = Y + s[X,Y] + \frac{s^2}{2!} [X, [X,Y]] + \frac{s^3}{3!} [X, [X, [X,Y]]] + \cdots$
	Riesz Theorem	Any Hilbert space is (anti-)isomorphic to its dual space. There exists 1 to 1 bijection between linear functionals F and vectors f . Such that we can make pairings $\langle F, f \rangle$.
1D systems	Piecewise Potentia	$\phi'(0^+) - \phi'(0^-) = -\frac{2m}{\hbar^2} \int_{-\varepsilon}^{\varepsilon} dx (E - U)\phi$
	Harmonic Oscillato	r Q,P dimensionless operator
		Ladder Operator to describe the relationships between discrete states
		$H = \hbar\omega\left(a^+a + \frac{1}{2}\right); \left[a, a^+\right] = I$
Quantum Dynamics	Free Particle	$\phi_E(x) = Ae^{ikx} + Be^{-ikx}$
		$k = \frac{\sqrt{2m(E - V_0)}}{\hbar}$
	Gaussian wave pac	kage $\psi(x) = N \exp\left(-(\alpha x - q)^2 + \frac{i}{\hbar}p(x - q) + \frac{i}{\hbar}\gamma\right)$

	Heisenberg equat	$\frac{1}{dt} = \frac{1}{\hbar} \langle [H, A] \rangle + \langle \frac{1}{\partial t} \rangle$	
Lie Group and Lie Algebra		$ \widehat{D}(x) = \widehat{l} + i \sum_{j=1}^{n} x_j \widehat{T}_j + \cdots $ $ \widehat{T}_j = -i \frac{\partial \widehat{D}}{\partial x_j} \bigg _{x=0} $	
	Infinitesimal Generator	$\widehat{D}(x) = \left(\widehat{D}(\Delta x)\right)^m \approx \left(1 + i\Delta x\widehat{T}\right)^m = \left(1 + i\frac{x}{m}\widehat{T}\right)^m \xrightarrow[m \to \infty]{} e^{ix\widehat{T}}$	
	Lie Algebra	Translation in Phase plane $[\hat{q}, \hat{p}] = i\hbar \hat{l}$ Harmonic Oscillator $[\hat{a}, \hat{a}^{\dagger}] = \hat{l}, [\hat{N} \cdot \hat{a}] = -\hat{a}, [\hat{N}, \hat{a}^{\dagger}] = \hat{a}^{\dagger}$ Quantum angular momentum $SU(2)$ $[\hat{f}_j, \hat{f}_k] = i\hbar \sum_l \epsilon_{jkl} \hat{f}_l$	
	Evolution Operator	If the Hamiltonian is an element of a Lie algebraMagnus form $\widehat{U} = e^{i \sum_{j} \alpha_{j} \widehat{K}_{j}}$ Wei Norman Form $\widehat{U} = \prod_{j} e^{i\beta_{j} \widehat{K}_{j}}$	
Quantum Phase Distribution	No quantum phase space distributions will fulfil all the requirements below		
1. A classical phase-space density is real and non- 2. A classical phase-space density is normalisable, $\int \rho(q, p) dp dq$ over the whole phase space has to be finite.		e-space density is real and non-negative, i.e., $\rho(q, p) \in \mathbb{R}\rho(q, p) \leq 0$ for all q, p. e-space density is normalisable, i.e., the integral phase space has to be finite. ues of functions \$A(p, q)\$ of position and momentum are given by phase-space integrals p(p, q)dp dq.	