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Principles State The state of a quantum system is described by a non-zero vector in a Hilbert space.
Superposition vectors describe the same states if they are equivalent in the projective Hilbert Space
Observable A measurable quantity is described by a Hermitian operator on the Hilbert space.
Measurement Eigenvalues of Hermitian operators are the measure outcomes.
Evolution ih|¢) = H|p)
Collapse Postulate | After the measurement, the state will be projected on the eigenvectors.
Operators : .
P Uncertainty Principle | | piinimal Uncertainty at gaussian package
Uncertainty Principle is completely a consequence of statistic, as the trade-off
between the spatial space and dual function space
Commutator Commute operators share same eigenvectors
[,9] = inl
Complete set of Commuting Observables (C.S.C.0) means non-degenerated
diagonalizable observables
Hermitian Eigenvalues are real
Eigenvectors of a Hermitian operator belonging to different eigenvalues are
orthogonal
Expectation of Hermitian operators are Real
All expectation of an operator are real -> operator is Hermitian
The eigenvectors of a Hermitian operator form a complete orthogonal basis set
for the Hilbert space the operator acts upon.
Hadamard Lemma 52 s3
eXYe ! =¥ +s[X, Y]+ [X, [, Y]] + 5 [X, [x,[x, Y]]] + o
Riesz Theorem Any Hilbert space is (anti-)isomorphic to its dual space. There exists 1to 1
bijection between linear functionals F and vectors f . Such that we can make
pairings (F, f) .
1D systems Piecewise Potential

2 &
(01 - 90 = -2 J dx(E — V)¢

Harmonic Oscillator

Q, P dimensionless operator

Ladder Operator to describe the relationships between discrete states

H= hw<a+a+%);[a,a+] =]

Quantum Dynamics

Free Particle

¢ (x) = Ae'** + Be 1kx

kzﬁn(i—m

Gaussian wave package

Y(x) = Nexp (—(ax —q)*+ ;ll-p(x —q)+ ;lly>
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9P = 3 Re(@) = 2
Heisenberg equation | d(4) i 0A
ar = h([H'A]) + <6t>
Ehrenfest theorem The dynamics of expectation evolve like the classical quantities
da) )
dt m
d(p) _ <6V)
dt =~ ‘dq

Lie Group and Lie Algebra

Representation | . n R
of the Lie group |D(x) =1+ izijj 4.

j=1
Generator of the | _ oD
Ti=—iz—
rou
g p J an B
x=0
Infinitesimal ~ = m N X _\™ T
Generator D(x) = (D(4x)) ~ (1+i4xT) = (1 + 1mT) —e
Lie Algebra Translation in Phase plane [q, ﬁ] =ikl
Harmonic Oscillator [a, a’r] =1 [1\7, a] = -4, [ﬁ‘ @’r] =at
Quantum angular momentum a1 .
SU(2) []jrjk] = lflz ejkl]l
1
Evolution

If the Hamiltonian is an element of a Lie algebra

Operator

Magnus form

. 1211]1?]
U=e“~i

Wei Norman Form 7= 1_[ olBiR;

Quantum Phase Distribution

No quantum phase space distributions will fulfil all the requirements below

1.A classical phase-space density is real and non-negative, i.e., p(qﬂp) € lRp(q'p) < Oforallq, p.

2. A classical phase-space density is normalisable, i.e., the integral
f p(qp)dp dg

over the whole phase space has to be finite.

3. Expectation values of functions $A(p, q)$ of position and momentum are given by phase-space integrals

(4) = fA (ra)p(p q)dp dq.

4. The p-and g-distributions are given by the marginals

pp(q) = fp (rq)dq
pq(p) = fp (pq)dp
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