Special Relativity	X The object diagram su object con C For <i>ct</i> , the Therefore, the set of o Question:	is not an invariant. But an Object is a set of events in the spacetime ach that $O(x, t)$. Therefore, for different observers at a specific time, the tains different events. dx' < L dx' < L dx' < L dx' = L						
Lorentz Group	Lorentz transformation Λ	Proper $det\Lambda = 1$ Orthochronous $\Lambda_0^0 > 0$						
	Parity	<i>diag</i> (1,-1,-1,-1)						
	Time reversal	diag(-1,1,1,1)						
	PT	diag(-1, -1, -1, -1)						
	Poincare transformation	$x^{\mu'} = \Lambda^{\mu'}_{\nu} x^{\nu} + a^{\mu'}$						
Metric	Definition:	$ds^2 = g_{ab}(x)dx^a dx^b$						
	Polar	$ds^2 = dr^2 + r^2 d\theta^2$						
	Spherical	$ds^2 = dr^2 + r^2(d\theta^2 + \sin^2\theta d\phi^2)$						
	Paraboloid	$ds^2 = (1+4\rho^2)d\rho^2 + \rho^2 d\theta^2$						
	Schwarzschild	$s^{2} = c^{2} \left(1 - \frac{R}{r} \right) dt^{2} - \frac{dr^{2}}{1 - \frac{R}{r}} - r^{2} (d\theta^{2} + \sin^{2} \theta d\phi^{2})$						
	Rindler metric	$ds^2 = \alpha^2 x^2 dt^2 - dx^2$						
	Noether's theorem	$\frac{d}{ds}\left(g_{pd}\frac{dx^{b}}{ds}\right) = 0 \text{ for } g_{ab} \text{ doesn't depent on } x^{p}$						
Covariant Derivative	Motivation: The derivative of (p,q) type tensor is not a tensor in general							
	$ \begin{aligned} \nabla_c v^a &= \partial_c v^a + \Gamma^a_{bc} v^b \\ \nabla_c v_b &= \partial_c v_b - \Gamma^a_{bc} v_a \end{aligned} $							
	$\nabla_a g_{bc} = \partial_a g_{bc} - \Gamma_{cba} - \Gamma_{bca} = 0$							
	Christoffel symbol Levi-Civita Connect	tion $\Gamma_{bc}^{a} = \frac{1}{2}g^{ad} (\partial_{b}g_{dc} + \partial_{c}g_{bd} - \partial_{d}g_{bc})$ $ds^{2} = dr^{2} + r^{2}d\theta^{2}$						

			$ds^2 = d\theta$	$^{2} + \sin^{2} \theta d$	φ ²					
Parallel	Motivation	Motivation		It doesn't make sense to add two tangent vectors based on different points						
Transport	Linear parallel tran	Linear parallel transport		$P(x_A, x_B)^a = \delta^a_b - \Gamma^a_{bc} \delta x^c = \delta^a_b - \Gamma^a_{bc} (x^c_A - x^c_B)$						
	Equation of parallel transportation		$\frac{dv^{a}}{d\lambda} + \Gamma^{a}_{bc} \frac{dx^{c}}{d\lambda} v^{b} = 0, \text{ the curve C is parameterized by } \lambda$ $\frac{dv_{b}}{d\lambda} - \Gamma^{a}_{bc} v_{a} \frac{dx^{c}}{d\lambda} = 0$							
	Desire:		metric o	connection	$\nabla_{\!c} g_{ab} = \partial_c g$	_{ab} – Γ _{bac}	$-\Gamma_{abc}=0$			
			Torsion	free	$\Gamma^a_{bc} = \Gamma^a_{cb}$					
Geodesic	Motivation	The st	traight line	e, locally sho	rtest]				
	Geodesic equation	$\int \frac{d^2 x^a}{ds^2} + \Gamma^a_{bc} \frac{dx^b}{ds} \frac{dx^c}{ds} = 0$								
		$\frac{v_b(x)dx^b}{ds} = const, if \nabla_a v_b + \nabla_b v_a = 0$								
Riemann	Riemann Tensor	Riemann Tensor $R^a_{bcd} = \partial_c \Gamma^a_{bd} - \partial_d \Gamma^a_{bc} + \Gamma^a_{ec} \Gamma^e_{bd} - \Gamma^a_{ed} \Gamma^e_{bc}$								
Curvature	Equation of geode deviation	Equation of geodesic deviation			$\frac{D^2 w^a}{ds^2} = -R^a_{bcd} u^b w^c u^d$					
		$[\nabla_c, \nabla_d]v$	$\left[\nabla_{c}, \nabla_{d}\right] v^{a} = R^{a}_{bcd} v^{b}$							
	Parallel transport a a rectangle									
	Bianchi Identity	Bianchi Identity			$V_d R^a_{bec} = 0$					
	Ricci Tensor	$R_{bc} = -R^a_{bca} = R^a_{bac}$								
	Scalar curvature	$R = g^{ab} H$	R _{ab}							
GR	Energy	$\partial_{\nu}T^{\mu}$	v = 0							
	tensor	Symi	Symmetric							
		$T^{00} = u, T^{0i} = \frac{S_i}{c}, T^{i0} = cg_i$								
		S flux of energy, g momentum density, T^{ij} flux of momentum, u energy density								
	Schwarzschild Black Hole	metr	ic	$ds^2 = c^2 \bigg($	$\left(1-\frac{R}{r}\right)dt^2 - \frac{1}{r}$	$\frac{dr^2}{1-\frac{R}{r}} - r$	$d\theta^2 + \sin^2$	$^{2}\theta d\phi^{2})$		
		S'chi	ild radius $R = \frac{2GM}{c^2}$							
		Geoo equa	desic tion	$\ddot{r} + \frac{c^2 R}{2r^2} \left(1 \right)$ $ck^2 = g_{t\beta}$	$-\frac{R}{r}\bigg)t^2 - \bigg(1$ $\frac{dx^{\beta}}{ds} = c^2\bigg(1 - \frac{dx^{\beta}}{ds}\bigg)$	$-\frac{R}{r}\bigg)^{-1} \frac{1}{2}$ $-\frac{R}{r}\bigg)\frac{dt}{ds}$	$\frac{R}{r^2}\dot{r}^2 - r\left(1\right)$	$-\frac{R}{r}\Big)(\dot{\theta}^2+\sin^2$	$ heta \dot{\phi}^2 ig) = 0$	
				$h = r^2 \sin^2 \theta \frac{d\varphi}{ds}$						
		Conr	Connections $\Gamma_{tt}^{r} = \frac{c^{2}R}{2r^{2}} \left(1 - \frac{R}{r}\right), \Gamma_{rr}^{r} = -\left(1 - \frac{R}{r}\right)^{-1} \frac{R}{2r^{2}}$ $\Gamma_{rr}^{r} = -r\left(1 - \frac{R}{r}\right), \Gamma_{rr}^{r} = -r\left(1 - \frac{R}{r}\right)\sin^{2}\theta$							
					_ r)' [•] ¢¢	, (1	r) ^{sin o}			
	Kruskal									

	Coordinates	
Interesting Scenarios	Deflection of Light	
	Fall into Black Hole	
	Newtonian Gravity]	
	Tidal Force	